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 Ion-Beam-Driven High Energy Density Physics 

High production efficiency and repetition rate 

Heavy Ion Fusion (Future)  Warm Dense Matter Physics (Present) 

High efficiency of energy delivery and deposition 

Why ion beams? 

D-T 

Itotal~100 kA 

τb~ 10 ns 

Eb ~ 10 GeV 

Atomic mass ~ 200 

corresponds to the 

interiors of giant planets 

and low-mass stars 

Ib~1-10 A 

τb~ 1 ns 

Eb ~ 0.1-1 MeV 

Ions: K+, Li+  

foil Presently accessible ρ-T 

regime 

ρ~1 g/cm3, T~1 eV 
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Outline 

Modeling of gas-dynamic ECR plasma ion source 

Studies of nonlinear dynamics and collective processes in intense 

ion beams in periodic focusing accelerators and transport systems  

ion 

source 

acceleration 

and transport 

neutralized 

compression 

final 

focusing  

target 

Studies of neutralized ion beam transport along a weak 

solenoidal magnetic field 

Studies of collective ion beam focusing by a weak solenoidal 

magnetic field 

 This presentation reviews studies of transport properties of an 

intense ion beam propagating in an ion driver 
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Ion driver 

• Ion beam extraction 

• Emittance measurements 

• Equilibrium (matched) beam distributions 

• Halo production by a beam mismatch 

• Enhanced self-focusing 

• Electromagnetic wave excitation 

• Collective focusing magnetic lens 

• Collective focusing for NDCX final focus 



Neutralized Drift Compression Experiment (NDCX) 

Beam parameters at the target plane 

K+ @ 300 keV (βb=0.004) 

Ib~2 A , rb < 5 mm (nb~1011 cm-3) 

upgrade 

NDCX-II 

Li+ @ 3MeV  (βb=0.03) 

Ib~30 A , rb~1 mm (nb~6∙10
12 cm-3) 

Ttarget ~0.1 eV Ttarget ~1 eV 
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8T 

Target Final Focus 

Solenoid 

Schematic of the NDCX-I experimental setup (LBNL)         
The heavy ion driver for Warm Dense Matter Experiments 



I. Modeling of the ion beam extraction from a gas-

dynamic ECR plasma ion source 
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Gas-Dynamic ECR Ion Source (SMIS 37) 
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Extracted beam  

I~150 mA 

εN~0.9 π∙mm∙mrad 

j~1A/cm2  

N+  N++ N+++ 

<Zi>~2 

ECR discharge
beam

Puller

FC

L~30 cm

Magnetic 

trap (2T)

Lp~25 cm

Plasma electrode 

(U~20-60 kV)

Microwave 

radiation        

(37.5 GHz, 

100 kW)

n~1013 cm-3 Te~50 eV
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High current / Low Charge State 

ion sources 

Multi-charged / Low current ion 

sources 

Gas-dynamic ECR ion source 

Vacuum arc sources (MEVVA), RF (multicusp) ECR ion sources (classical)   Zi >> 1 

Moderate charge-state (Zi>1)  High beam current 

SMIS 37                

Build and operated  

IAP RAS (Russia) 

Gas-dynamic ECR source looks promising as a source for HIF driver 
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 Principles of the Ion Beam Extraction from Plasma 
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d0 

Plasma-vacuum surface (meniscus) evolves in order to match jB ≈ jCL 

S0 
0 

Uext U=0 
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d>d0

S>S0

S<S0

d<d0

Low-density plasma (jB<j0CL) Overdense plasma (jB>j0CL) 

 

WARP code 
WARP code 

jb / jCL ≈ 0.5 
jb / jCL ≈ 9 



Single-aperture extraction: Experiment and Simulations 

Experiment WARP code 
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Schematic of WARP simulations Extracted beam current 

The results of the numerical simulations are in very good agreement 

with the experimental measurements 

Plasma sheath model  

• Ions are injected with the Bohm velocity 

• Boltzman electrons with Te= 50 eV are assumed  

• Possion equation is used for potential variations 

• N+:N++:N+++ obtained from measurments 

• np0 and Ti are chosen to match the measurements 

Extraction aperture - 1 mm 

d0 

M. Dorf et al. submitted to NIMA (2012) 



Noise Suppression and Stabilization of an Ion Beam 

Extracted from Overdense Plasma 

Beam formation in the plateau regime  

significantly enhances the brightness (BPlateau~16Bregime of maximum extracted current) 

provides stable extraction despite large plasma fluctuations 
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M. Dorf et al., J. Appl. Phys., 102, 054504 (2007). 

It is of particular practical importance to suppress noise in the extracted 

beam current provided by fluctuations in the plasma density 



Measurements of the Transverse Beam Emittance 

Images of 

plasma   

discharge 

Scintillator plate image 
Beam phase-space measurements 

using  the pepper-pot method 

Beam phase-space reconstruction 

Multiaperture plasma electrode 

2 cm 

Ø=3mm 

The diagnostics demonstrates high values of the ion beam 
transverse temperature  (~10 eV) 

A. Sidorov, M. Dorf, V. Zorin, et al., 

Rev. Sci. Instrum. 79, 02A317 (2008).  

Schematic of the diagnostics setup 
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Similar assumption of high ion temperature (~10 eV) was 
required in numerical modeling to match the experiments 

A reduced analytical model was developed to explain such 
high ion temperatures  M. Dorf et al, Phys. Plasmas, 15, 093501 (2008).  



II. Studies of nonlinear transverse beam dynamics in 

periodic focusing transport systems 

11 
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Periodic Focusing Lattices 
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SSmooth focusing 

(betatron)  period,  

2π/κsf

Vacuum phase advance   

 σvac = κsfS/2π 

In the presence of space charge, the 
phase advance, σ, is depressed,    

                        σ<σvac 

 σ/σvac→1 emittance dominated beam  

σ/σvac→0  space-charge dominated beam 

z 

x 



Equilibrium (Matched) Beam Distribution 

Smooth-focusing approximation 

 ˆ ˆfoc

sf sf x yF x y  e e

Beam Equilibrium 

The transverse Hamiltonian 

(particle energy) is not conserved 
The transverse Hamiltonian is an 

invariant of beam particles motion  

Oscillating focusing field 
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Nonlinear effects of the intense 

beam self-fields provide a significant 

challenge for analytical studies  
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Adiabatic Formation of a Matched Beam Distribution 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60

 

0

rms

b

X

X

Evolution of the beam envelope 

σ/σvac=0.26, σvac=660
 

s/S 

        2 1 q

q sf x y q x yF V s x y V s s x y        e e e e

Smooth- focusing 

equilibrium with 
Quasiequilibirum 
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uniform focusing field   
Adiabatic turn-on of the 

oscillating focusing field 

The average (smooth-focusing) effects of the total 

focusing field is maintained fixed 

Quiescent beam propagation over several hundred lattice periods has been 

demonstrated for a broad range of beam intensities and vacuum phase advances 
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Quadrupole lattice (WARP simulations) 

Dorf et al., Phys. Plasmas 16, 123107 (2009) 1

4 

  THfb

0exp 
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evolution 
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modes 

~6 orders of 
magnitude 
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Self-Similar Beam Density Evolution 
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Self-similar beam density evolution has been demonstrated for a broad range of 

beam intensities. The self-similarity feature becomes less accurate for σvac~800. 
Dorf et al., Phys. Plasmas 16, 123107 (2009) 
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ω1 

ω2 

Due to the nonlinear effects of 

the beam self-fields particles 

with higher energy move with 

higher frequency  

Rb 

z 

Matched  

beam radius 

Mismatch 

oscillations 

ωpart~ ωmis/2 

Parametric resonant 

interaction 

Smooth-focusing approximation 

Halo Production by a Beam Mismatch 

Resonance 

(O point) 

Separatrix 
X point 

R 

VR 

Radial Phase Space 

core 

halo 

Energy transfer Collective motion 
Individual motion            

(each particle is an oscillator) 

Beam Halo 

Cause degradation of the beam quality 

Can provide activation of the chamber wall 

One of the important problems: 

How to quantitatively define 

beam halo? 
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Spectral Method for Halo Particle Definition 

Bump-on-tail structure for ωβ>ωm/2 can be 

attributed to beam halo particles 

Smooth-focusing model (WARP simulations) 

Beam is an ensemble of betatron oscillators  

Initial 

(matched) 

distribution 

Final 

(mismatched) 

distribution 

Snapshot 
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M. Dorf et al Phys. Plasmas, 18, 043109 (2011).  



Extension of the Spectral Method to the Case of a 

Quadrupole Lattice  
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We introduce a mismatch by an instantaneous increase in the smooth-focusing frequency 
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Mismatch Relaxation in Intense Beams 
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III. Intense Ion Beam Transport through a 

Background Plasma  

Weak fringe magnetic fields (~100 G) penetrate deep into background plasma.  

Can a weak solenoidal magnetic field has a significant influence on intense ion 

propagation through a background plasma?  

   20 20 

8T 

Fringe magnetic fields 

Target Final Focus 

Solenoid 

Schematic of the NDCX-I experiment 



III. Ion Beam Propagation through a 

Neutralizing Background Plasma Along a 
Solenoidal Magnetic Field 

ion beam 

plasma 

B0 

e- vb 

21 
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Enhanced Self-Focusing of an Intense Ion Beam Pulse 

22 

Weak magnetic field is applied  Magnetic field is not applied  

B0=0 B0~100 G 

The ion beam space-charge is typically 
better compensated than the beam current 

There is a significant enhancement of the ion beam self-focusing 

effect in the presence of a weak solenoidal magnetic field. 
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fM 

fE 
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δr>0 

ẑ
̂

ωce>> ωpeβb 

B0 
beam 

Radial displacement of background electrons 
is accompanied by an azimuthal rotation  

Strong radial electric field is produced to balance 

the magnetic V×B force acting on the electrons  
Net self-pinching force is produced due to 
the self-magnetic field 

The total self-focusing force is given by  

M. Dorf et al., PRL 103, 075003 (2009) 

for 

The effects of self-pinching is maximum for  
rb<<c/ωpe, and the focusing force is given by  
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Enhanced Self-Focusing is Demonstrated in Simulations 

Gaussian beam: rb=0.55c/ωpe, Lb=3.4rb, β=0.05, nb=0.14np, np=1010 cm-3
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Magnetic self-pinching Collective self-focusing 
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Radial focusing force 

Bext=300 G 
The enhanced focusing is provided 

by a strong radial self-electric field 

Influence of the plasma-induced collective focusing on the ion beam dynamics in 

Radial electric field 

Bext=300 G LSP (PIC) 

ωce/2βbωpe=9.35  

NDCX-I is negligible 

NDCX-II is comparable to the final focusing of an 8 T short solenoid 

M. Dorf et al, PRL 103, 075003 (2009). 
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Electromagnetic Wave Excitation 

PIC (LSP) Semi-analytic Analytic 

Magnetic pick-up loop 
Numerical integration (FFT) 

assuming weak dissipation 

Analytical treatment of  poles in 

the complex plane 

Analytic theory is in very good 

agreement with the PIC simulations 

Wave-field excitations can be used for 

diagnostic purposes 

Strong wave excitation occurs at 

ωce/2βbωpe (supported by PIC simulations) 

βb=0.33, lb=10rb, rb=0.9∙c/ωpe, nb=0.05np, Bext=1600G, np=2.4∙1011cm-3 

Transverse magnetic field (Whistler waves) 

M. Dorf et al, Phys. Plasmas, 17, 023103 (2010). 

 



IV. Collective Focusing Lens for Final 
Beam Focusing 

25 

Schematic of the present NDCX-I final focus section 

drift section 

(8 Tesla) 

FFS 

25 

Challenges: 

Can a  weak magnetic lens be used for tight final beam focusing? 

Operate 8 T final focus solenoid 

Fill 8 T solenoid with a background plasma  



 neutralized ion beam 

e-, i+ 

magnetic lens  

B0 

IV. Collective Focusing of an Intense 
Neutralized Ion Beam Pulse 
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Collective Focusing Lens 
Collective Focusing Concept (S. Robertson 1982, R. Kraft 1987)  

27 

Strong ambipolar electric field is produced to balance the magnetic V×B force 

acting on the co-moving electrons 

Centrifugal 

force 

V×B magnetic 

force 

Electric 

force 

The use of a collective focusing lens allows for decrease in the magnetic field by (mi/me)
1/2 

Conditions for collective focusing 
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e i+ei

Le ~0.01 mm Li ~ 10 m Lc=(LeLi)
1/2 ~ 1 cm

B=500 G 

L=10 cm

Electron beam 

focusing

Ion beam 

focusing

Neutralized 

beam focusing
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The collective focusing concept can be utilized for final ion beam focusing in NDCX. 

No need to fill the final focus solenoid (FFS) with a neutralizing plasma 

Magnetic field of the FFS can be decreased from 8 T  to ~700 G 

Collective Focusing Lens for a Heavy Ion Driver Final Focus 

Schematic of the present NDCX-I final focus section 

Beam can drag neutralizing electrons from the drift section filled with plasma. 

drift section 

(FFS) 

28 

FFS 
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Numerical Simulations Demonstrate Tight Collective Final Focus for NDCX-I 

Schematic of the NDCX-I simulation R-Z PIC (LSP) 
Beam injection parameters: 

K+ @ 320 keV, rb=1.6 cm, 

Ib=27 mA Tb=0.094 eV,  

Plasma parameters 

(for the simulation II) 
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Conclusions 

30 

acceleration 

and transport 

neutralized 

compression 

final 

focusing  

• A numerical method for the adiabatic formation of a 

quasi-equilibrium beam distribution matched to a 

periodic focusing lattice was developed 

• A spectral method for beam halo definition was proposed 

• Enhanced self-focusing of an intense ion beam pulse 

propagating through a magnetized plasma background 

was found 

• The feasibility of tight collective focusing of intense ion 

beams for NDCX was demonstrated 

Transport properties of intense ion beam pulse propagating in an ion 

driver have been investigated, in particular: 

30 

ion 

source 

• Electromagnetic (whistler) wave excitation was analyzed  

• Modeling of the ion beam extraction from the SMIS-37 

ion source was performed 

• Low-noise extraction regimes were identified 

• Ion beam transverse emittance was analyzed 


